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1. Introduction

It has been argued in a very recent paper [1] that purely bosonic solutions preserving

31 out of 32 supersymmetries, hence describing BPS preon states [2], do not exist for

IIB supergravity. Using the moving G-frame method of [3] (section 1.2), we rederive this

result here (section 2). Then, we apply the same technique to the IIA case and also show

that preonic solutions do not exist in type IIA supergravity (section 3). Nevertheless, the

concluded absence of preonic solutions could be modified if the ‘stringy’ (α ′)3-corrections

to the dilatino transformation rule were made explicit and taken into account (section 5).

For D = 11 supergravity, the existence of BPS preonic solutions is not ruled out even

at the classical level (i.e., ignoring (α′)3-corrections), although the above negative results

for type IIA supergravity already set strong restrictions (section 4) to be satisfied by these

solutions.

1.1 Basic notions and notation

In eleven-dimensional supergravity [4] the only fermionic field is the gravitino, ψ̌ α̌ =

dxµ̌ψ̌ α̌
µ̌ = dxµψ̌ α̌

µ + dx#ψ̌ α̌
# (µ̌ = (µ; #), µ = 0, 1, . . . , 9). In contrast, the ten-dimensional

type II supergravities [5, 6] contain, in addition to two sixteen-component ‘spin 3/2’ grav-

itini, two ‘spin 1/2’ dilatini fields χ̌α̌. We use the czek superscript α̌ to denote the type

II indices of the 32-component reducible spinors. In the IIB case α̌ is the double index

α̌ = (α, I), where I = 1, 2 labels the two Majorana-Weyl (MW) spinors of the same chi-

rality and α = 1, . . . 16. In the IIA case, where both chiralities are present, α̌ denotes the

Majorana spinor index and thus α̌ = 1, . . . , 32.

In particular, for the dilatino of type IIA supergravity we write

IIA : χ̌α̌ := (χα1 , χ2
α) , α̌ = 1, . . . 32 , α = 1, . . . 16 . (1.1)
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while in type IIB supergravity the 32-component dilatino field decomposes into two MW

spinors of the same chirality,

IIB : χ̌α̌ := (χ1
α , χ

2
α) , α̌ = (α , I) , I = 1, 2 , α = 1, . . . 16 . (1.2)

Notice that in the IIB case the position of the index α̌ cannot be changed since the two

MW spinors are of the same chirality and there is no 16 × 16 charge conjugation matrix

in the MW spinor representation. In contrast, in type IIA a 32 × 32 charge conjugation

matrix exists; it is anti-diagonal in the Weyl-like realization used here and exchanges the

1 and 2 MW components in (1.1).

In this condensed 32-component notation, the supersymmetry transformation rules for

the gravitini and dilatini fermionic fields can be written in compact form for both IIA and

IIB cases as

δsusyψ̌
α̌
a = Daε̌ α̌ := Daε̌

α̌ − ε̌β̌ ťa β̌α̌ , δsusyχ̌ = ε̌M , (1.3)

where D = d − ω is the Lorentz covariant derivative and D = D − ť is the generalized

covariant derivative which includes, besides the (suitable) spin connection ω := 1
4ω

abΓ̌ab,

the additional tensorial IIA or IIB ť contributions. The transformation rules for the dilatino

are algebraic and are characterized by a 32 × 32 matrix Mβ̌
α̌. The form that this matrix

takes will be crucial for the discussion below.

In the IIA case, and ignoring inessential bilinear fermionic contributions, the terms in

δsusyχ̌ (eq. (1.3), see e.g. [6] and [7] and refs therein) are determined by the matrix

IIA : Mβ̌
α̌ =

( 3
8e

ΦR/(2) + 1
8R/

(4) 1
2∂/Φ− 1

4H/
(3)

1
2 ∂̃/Φ + 1

4H̃/
(3) −3

8e
ΦR̃/(2) + 1

8 R̃/
(4)

)
. (1.4)

in terms of all the possible IIA fluxes (on-shell field strengths), namely,1

R2 := dC1 , R4 := dC3 − C1 ∧H3 , H3 := dB2 and dΦ : (1.5)

{
H/(3) = 1

3!Habcσ
abc , σabc := (σ[aσ̃bσc])αβ ,

H̃/(3) = 1
3!Habcσ̃

abc , σ̃abc := (σ̃[aσbσ̃c])αβ
,

{
∂/Φ := ∂aΦσ

a
αβ ,

∂̃/Φ := ∂aΦσ̃
aαβ ,

(1.6)

{
R/(2) := 1

2!Rab(σ
ab) = −R̃/(2)T , σab := (σ[aσ̃b])α

β , σ̃ab := (σ̃[aσb])βα
R/(4) = 1

4!Rabcdσ
abcd

α
β = (R̃/(4))βα , σabcd := (σ[aσ̃bσcσ̃d])α

β .
(1.7)

The type IIB matrix M , in contrast, is given by (see [5])

IIB : Mβ̌α̌ =

(
1
2∂/Φ + 1

4H/
(3) −1

2e
Φ
R/(1) + 1

4e
1
2 Φ

R/(3)

1
2e

Φ
R/(1) + 1

4e
1
2 Φ

R/(3) 1
2∂/Φ− 1

4H/
(3)

)
, (1.8)

1σa = σaαβ , σ̃a = σaαβ , a = 0, 1, . . . , 9 ; σaσ̃b + σbσ̃a = 2ηab = σ̃aσb + σ̃bσa. The sigma matrices with

one and five (three) vector indices are symmetric (antisymmetric) with respect to the spinor ones. The

transposition of untilded sigma matrices with four and two vector indices, respectively, converts them into

the corresponding tilded and minus tilded ones.
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and involves the one-form and the three-form fluxes of type IIB supergravity,

R1 := dC0 , R3 := dC2 − C0H3 , H3 := dB2 and dΦ , (1.9)

but not the self dual five-form flux R5,

R5 := dC4 − C2 ∧H3 , R5 = ∗R5 ⇔
{
R/(5) = 0 ,

R̃/(5) 6= 0 .
(1.10)

When only purely bosonic solutions are considered, ψ̌ = 0, χ̌ = 0, the parameter as-

sociated with the preserved supersymmetry obeys a differential equation and an algebraic

one, namely Dε̌ = 0 and ε̌M = 0. Usually, to describe a solution preserving k supersym-

metries (a ν = k/32 state), one uses k independent bosonic Killing spinors εα̌I (I = 1, . . . k,

ε̌ = κIεα̌I with arbitrary constant fermionic κI) that satisfy the following differential (from

δsusyψ̌
α̌
a = 0) and algebraic (from δsusyχ̌ = 0 ) Killing equations

Dε̌I := Dε̌I − ε̌I ť = 0 , (1.11)

ε̌IM = 0 (I = 1, . . . , k) , (1.12)

which guarantee that the solution remains bosonic and hence invariant after a gravitino

and dilatino supersymmetry transformation.

The conclusion of [1] on the absence of a preonic solution of type IIB supergravity

is based on the algebraic equation (1.12) and uses (1.11) to close the argument. We now

recover this result below by using the moving G-frame method of [3].

1.2 The moving G-frame method and preonic spinors

A preonic state [2] preserves all supersymmetries but one; it is a ν = 31/32 supersymmetric

BPS state. As a result, it can be characterized by one bosonic spinor λ̌α̌ orthogonal to all

the 31 bosonic Killing spinors ε̌ α̌I in (1.11),

ε̌I λ̌ = ε̌ α̌I λ̌α̌ = 0 , I = 1, . . . , 31 . (1.13)

As it was noticed in [3], when the generalized holonomy group of supergravity [8, 9] is a

subgroup of SL(32,R) (which is the case for both D=11 [10] and type II D=10 supergrav-

ities [11]), the spinor characterizing a BPS preonic state obeys the differential equation

Dλ̌ := Dλ̌+ ťλ̌ = 0 , (1.14)

where ť is the same tensorial part of the generalized connection in eqs. (1.11) and (1.3).

Notice that if ť 6= 0 (the case of non-vanishing fluxes), eq. (1.14) is not equivalent to the

Killing equation (1.11) even for the type IIA case where the 32 × 32 charge conjugation

matrix does exist.

Applied to the present problem, the moving G-frame method [3] implies that eq. (1.12),

looked at as an equation for the matrix M , is solved when k = 31 by

M = λ̌⊗ š i.e.

{
IIA : Mβ̌

α̌ = λ̌β̌ š
α̌ ,

IIB : Mβ̌α̌ = λ̌β̌ šα̌ ,
(1.15)
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where šα̌ is a certain spinor. The algebraic structure of the matrix M implies a series

of restrictions on the preonic spinor λ̌β̌. At the same time, eq. (1.15) imposes a series of

restrictions on the fluxes involved in the matrix M .

Eq. (1.15) will be the basic equation in our analysis of the absence of preons among

the bosonic solutions of type II supergravities.

2. Absence of preons in type IIB supergravity

In the type IIB case the matrix M has the form of eq. (1.8), and eq. (1.15) implies the

following relations for the one- and three-form fluxes

1
2∂/Φ + 1

4H/
(3) = λ1

αs
1
β , (2.1a)

−1
2e

Φ
R/(1) + 1

4e
1
2 Φ

R/(3) = λ1
αs

2
β , (2.1b)

+1
2e

Φ
R/(1) + 1

4e
1
2 Φ

R/(3) = λ2
αs

1
β , (2.1c)

1
2∂/Φ− 1

4H/
(3) = λ2

αs
2
β . (2.1d)

(2.1)

These fluxes then can be expressed through the IIB preonic spinor λ̌α̌ := (λ1
α , λ

2
α) and

an arbitrary spinor šβ̌ := (s1
β , s

2
β). Furthermore, the consistency of eqs. (2.1) imposes a

set of algebraic equations on these two spinors. They follow from the fact that the fluxes

enter into eqs. (2.1) through matrices which possess definite symmetry properties,

(∂/Φ)T = +∂/Φ , (H/(3))T = −H/(3), (R/(3))T = −R/(3), (R/(1))T = +R/(1). (2.2)

These lead to the algebraic constraints

(a) λ1
[αs

1
β] + λ2

[αs
2
β] = 0 , (b) −λ1

[αs
2
β] + λ2

[αs
1
β] = 0 ,

(c) λ1
(αs

1
β) − λ2

(αs
2
β) = 0 , (d) λ1

(αs
2
β) + λ2

(αs
1
β) = 0 .

(2.3)

A straightforward algebra shows that eqs. (2.3) have only trivial solutions. This means

that either the preonic or the auxiliary spinor is zero,

IIB : λ1
α = λ2

α = 0 or s1
β = s2

β = 0 . (2.4)

In both cases the matrix M = 0 and, hence, all the fluxes except the five-form flux

(eq. (1.10)) are equal to zero, R1 = dΦ = R1 = R3 = 0. Nevertheless, the fact that

the solution s1
β = s2

β = 0 of (2.3) allows for a non-vanishing preonic spinor (λ1
α, λ

2
α) might

give hope, at this stage, of finding a nontrivial and unique solution λ̌ to eq. (1.14) and

k = 31 solutions ε̌I for eq. (1.11). This possibility is ruled out by looking at eq. (1.11).

For simplicity let us begin by discussing eq. (1.14). When only the five-form flux is non-

vanishing, eq. (1.14) would acquire the relatively simple form of

R1 = R3 = H3 = dΦ = 0 :

{
Dbλ

1
α = − 1

16(σbR/
(5))α

βλ2
β ,

Dbλ
2
α = 1

16(σbR/
(5))α

βλ1
β .

(2.5)

Now one observes that, if (λ1
α, λ

2
α) is a solution of eq. (2.5), (−λ2

α, λ
1
α) provides another

one. As a result, the number of solutions of eqs. (2.5) is always even. The same is true
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of the Killing equation (1.11) since it has the same structure. Hence with vanishing one-

and three-form fluxes one can only have an even number of preserved supersymmetries.

These might include two-preonic solutions (preserving 30 supersymmetries) besides those

preserving all 32 supersymmetries, but not a preonic solution. The authors of [1] then

concluded that preonic solutions do not exist for type IIB supergravity.

We now apply our G-frame approach, used above to rederive the IIB result of [1], to

show that preonic solutions are also absent in type IIA supergravity.

3. Absence of preons in type IIA supergravity

The crucial point is that in the IIA case the matrix M , eq. (1.4), receives contributions from

all IIA fluxes, eq. (1.5). Hence if M is zero, all IIA fluxes are zero, the generalized covariant

derivative D becomes the Lorentz covariant derivative D and the generalized holonomy

group reduces to SO(1, 9), for which the number of possible preserved supersymmetries is

known (see [9, 12]).

As we shall see presently, M is indeed zero if we assume the existence of 31 Killing

spinors. In type IIA supergravity the preonic λ̌α̌ and auxiliary šα̌ spinors are 32-component

D = 10 Majorana spinors,

IIA : λ̌α̌ := (λ1
α , λ

α2) , šα̌ := (sα1 , s2
α) , α = 1, . . . , 16 . (3.1)

Eq. (1.15) can be split into four equations for the (16 × 16)-component blocks

3
8e

Φ
R/(2) + 1

8R/
(4) = λ1

αs
β1 , (3.2a) 1

2∂/Φ− 1
4H/

(3) = λ1
αs

2
β , (3.2b)

1
2 ∂̃/Φ + 1

4H̃/
(3)

= λα2sβ1 , (3.2c) − 3
8e

Φ
R̃/

(2)
+ 1

8R̃/
(4)

= λα2s2
β . (3.2d)

(3.2)

We now notice that R̃/
(2)

= −(R/(2))T , R̃/
(4)

= +(R/(4))T and that, accordingly, the l.h.s.’s of

eqs. (3.2a) and (3.2d) are equal among themselves. Hence, the r.h.s.’s of these equations

are also equal, λ1
αs

β1 = λβ2s1
α. This equation identifies the components of λ̌ and š up to a

factor a,

sα1 = aλα2 , s2
α = aλ1

α . (3.3)

Then, decomposing eq. (3.2a) or (3.2d) into their irreducible parts (i.e., identifying the

coefficients of the matrices σabα
β, σabcdα

β and δα
β, one finds the expressions for the RR

fluxes in terms of preonic spinors as well as an orthogonality condition between λ1 and λ2,

Rab = −a
6
e−Φλ2σabλ

1 , Rabcd = −a
2
λ2σabcdλ

1 , λα2λ1
α = 0. (3.4)

Substituting (3.3) for the s spinors in (3.2b) and (3.2c), these equations can be rewrit-

ten in the form

1

2
∂/Φ− 1

4
H/(3) = aλ1

αλ
1
β , (3.5a)

1

2
∂̃/Φ +

1

4
H̃/

(3)
= aλα2λβ2 . (3.5b) (3.5)

The r.h.s.’s of eqs. (3.5) are symmetric, while the l.h.s.’s contain the antisymmetric ma-

trices H/(3) = −(H/(3))T and H̃/
(3)

= −(H̃/
(3)

)T which, hence, should be equal to zero. This
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implies the vanishing of the NS-NS flux H3 for a hypothetical preonic solution of type IIA

supergravity, Habc = 0. Then one arrives at

1

2
σaαβDaΦ = aλ1

αλ
1
β ,

1

2
σ̃aαβDaΦ = aλα2λβ2 . (3.6)

Since we are in ten dimensions these equations imply, besides DaΦ ∼ λ1σ̃aλ
1,

aλ1σ̃a1...a5λ1 = 0 , aλ2σa1...a5λ2 = 0 . (3.7)

Eqs. (3.6) or (3.7) imply the absence of BPS preons among the bosonic solutions of

type IIA supergravity. Indeed, for non-vanishing a (a 6= 0) eqs. (3.7) have only trivial2

solutions, λ1 = 0 = λ2. This may correspond to the case of a fully supersymmetric

solution of supergravity (preserving the 32 supersymmetries), but not to a preonic one.

The other possibility, a = 0, also implies the vanishing of the M matrix (1.4) and hence

of all type IIA supergravity fluxes, R2 = 0 = R4, H3 = 0 = dΦ, and thus the generalized

connection in the Killing equation (1.11) reduces to the spin-connection, D = D. In such

a case it is known (see [9, 12]) that the Killing spinor equation Dε̌ = 0 may have either

32 or up to 16 solutions. Thus a solution preserving 31 supersymmetries, a BPS preonic

solution, is not allowed.

This completes the proof of the absence of BPS preonic, ν = 31/32 supersymmetric

bosonic solutions in type II supergravities i.e., in the classical approximation to the type

II string theories.

4. The case of D = 11 supergravity

It is known that theD = 10 type IIA supergravity can be obtained by dimensional reduction

from D = 11 supergravity i.e., its solutions can be identified with solutions of D = 11

supergravity that are independent of one of the coordinates. In particular, the type IIA

dilatino χ̌α̌, eq. (1.1), originates from the 11-th component ψ̌α̌# of the D = 11 gravitino

ψ̌α̌µ̌ = (ψ̌α̌µ , ψ̌
α̌
#); schematically,

χ̌α̌ = ψ̌α̌# . (4.1)

The type IIA supersymmetry transformations can also be obtained from those of D = 11

by dimensional reduction . This implies, in particular, that the IIA M -matrix (1.4) comes

from the eleventh component of the D = 11 generalized connection; schematically,

Mβ̌
α̌ = (ω + ť)# β̌

α̌ . (4.2)

2A simple way to prove it from eq. (3.6) is to notice that this equation implies DaΦ ∝ λ1σ̃aλ
1 and

that, hence, DaΦ is a light-like ten-vector, DaΦDaΦ = 0. Then one may choose the Lorentz frame where

DaΦ ∝ (1, 0, . . . , 0,±1); in it, DaΦσaαβ ∝ (σ0
αβ ± σ9

αβ) = 2
P
p δ

p
αδ

p
β, where p = 1, . . . , 8. In this frame,

the first equation in (3.6) reads D0Φ
P

p δ
p
αδ

p
β = aλ1

αλ
1
β , which immediately implies that a 6= 0 is only

possible if half of the sixteen components of λ1
β are zero, λ1

β = λqδ
q
β . Taking this in account, the above

equation reduces to D0Φδqp = aλq λp with p, q = 1, . . . , 8 , which for a 6= 0 only admits the trivial solution

λ1 = 0 = λ2.

– 6 –
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This observation provides a starting point to probe the existence of BPS preonic so-

lutions in D = 11 supergravity or, more precisely, among the purely bosonic solutions of

the classical D = 11 supergravity [4]. It was shown in [13] that the existence of k Killing

spinors (k = 31 for preonic solutions) implies the existence of k(k + 1)/2 Killing vectors,

K ǎ
IJ := ε̌ α̌I Γǎ

α̌β̌
ε̌ β̌J , (4.3)

such that both the metric and the field strength F4 = dA3 of the three-form gauge field A3

are invariant under ‘translations’ along the directions of K ǎ
IJ ,

δKIJ gµ̌ν̌ = 2D(µ̌Kν̌)IJ = 0 , δKIJF4 := LKIJF4 = 0 . (4.4)

This actually implies that any supersymmetric solution of D = 11 can be considered (at

least locally) as a solution of D = 10 type IIA supergravity lifted (‘oxidized’) to D = 11.

Thus, because of the above negative result for the existence of preonic solutions in type

IIA supergravity, the only remaining possibility to have BPS preonic solutions in the D=11

case requires that they result from the ‘oxidization’ of a less supersymmetric solution of

the D = 10 type IIA supergravity.

If the lifting to D = 11 has to produce more supersymmetries, we need that one or

more Killing spinors εα̌
Ĩ

have non-vanishing derivative in the direction of a Killing vector,

schematically, ∂#ε
α̌
I 6= 0. In this way, the set of D = 11 Killing equations D#ε

α̌
I :=

D#ε
α̌
I − ε

β̌
I ť#β̌

α̌ = 0 will no longer reduce (see eq. (4.2)) to the algebraic equation (1.12).

As a result, the arguments from the discussion of the type IIA case would not apply in

D = 11 to exclude the existence of a preonic solution.

A Killing spinor εα̌J can be characterized [13] by means of three differential forms: a

Killing vector one-form K1 JJ := eǎK
ǎ
JJ , a two-form Ω2 JJ and a five-form Σ5 JJ . These

forms are the diagonal elements of the symmetric bilinear matrix forms with tensorial

components defined in eq. (4.3) and by

Ωǎ1ǎ2
IJ := ε̌ α̌I Γǎ1ǎ2

α̌β̌
ε̌ β̌J , Σǎ1...ǎ5

IJ := ε̌ α̌I Γǎ1...ǎ5

α̌β̌
ε̌ β̌J . (4.5)

The independence of a Killing spinor on a coordinate x# in some direction would also

imply the independence of its associated Killing vector KJJ (eq. (4.3)), of the two-form

ΩJJ and of the five-form ΣJJ (eq. (4.4)) on that direction. As the direction x# should

be characterized by one of the Killing vectors, the result of [13], stating that LKΩ2 = 0

and LKΣ5 = 0, implies the independence of the two- and the five-form on x#. However,

the Lie derivative of a Killing vector with respect to another Killing vector, LKK ′1, may

still be nonzero when there are two or more Killing vectors. Thus, at present we cannot

conclude that all Killing spinors εα̌I are independent of x# so that, albeit rather exotic, the

possibility of a ν = 31/32 supersymmetric solution in D = 11 supergravity remains open.

5. Could preonic BPS solutions still exist?

The established absence of preonic solutions in type II supergravities, i.e. for the classical

approximations to type II string theories, does not preclude the preonic conjecture of [2].

– 7 –
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At the time it was made, solutions preserving more than 16 out of the 32 supersymmetries

were not known except for the fully supersymmetric ones (see [14]). It was already men-

tioned in [2] that a kind of ‘BPS preon conspiracy’ could produce that only composites

of some number of preons (but not the preons themselves) could be found (‘observed’) as

supergravity solutions.

On account of the fundamental role played by preons in the classification of BPS

states [2], it is tempting to speculate that the fact that type II supergravities do not

have preonic solutions rather points out at a need for their modification. The most natural

refinement to try is to take into account stringy, (α′)3-corrections to the supergravity equa-

tions and to the supersymmetry transformation rules of the supergravity fields. Preonic

solutions in a ‘stringy corrected’ type IIA supergravity would be allowed if the correc-

tions modified eqs. (3.6) by adding some terms ∝ σabcdf and ∝ σ̃abcdf . Schematically, the

‘required’ modification would have to be of the form

aλ1
αλ

1
β −

1

2
σaαβDaΦ = 0 7→ aλ1

αλ
1
β −

1

2
σaαβDaΦ = Q−abcdeσ

abcde
αβ ,

aλ2αλ2β − 1

2
σ̃a αβDaΦ = 0 7→ aλ2αλ2β − 1

2
σ̃a αβDaΦ = Q+

abcdeσ̃
abcde αβ (5.1)

for some Qabcde ∝ (α′)3 (clearly, the ∝ σa contribution could also be changed, but this is

not essential for the present schematic discussion). Such a modification (5.1) of eq. (3.6)

might result from the associated additions to the dilatino transformation rules (1.3) (of the

type ∝ σ̃abcdf plus other terms not essential for our discussion). In terms of the M matrix,

this modification would imply

M 7→ M +

(
0 Q−abcdeσ

abcde
αβ

Q+
abcdeσ̃

abcde αβ 0

)
= M +Q±abcdeΓ

abcde 1

2
(1± Γ11) . (5.2)

Direct calculations of the stringy corrections [15 – 17] to the supersymmetry transfor-

mation rules have been hampered by the lack of a covariant technique to calculate higher

order loop amplitudes in superstring theory3. Nevertheless, bosonic string calculations

allowed to find stringy corrections to the Einstein equation [17]. The influence of these

corrections on the supersymmetric vacua and their relevance for their supersymmetric

properties [19] was used to find corrections to the gravitino supersymmetry transforma-

tion properties. As the discussions of the α′ modifications have also been extended to the

eleven-dimensional theory [16, 20]4, one can obtain the ‘corrected’ transformation rules

for the type IIA dilatino5 by dimensional reduction from those of the D = 11 gravitino

and thus derive the expression of the matrix M in eq. (1.4) that incorporates the ‘stringy

corrected’ counterpart of eq. (4.2).

3Such a technique has been recently proposed in the framework of Berkovits’s pure spinor approach [18]

to the covariant description of the quantum superstring.
4The contributions to the generalized connection (i.e. to the supersymmetry transformation rules for

the gravitino) were calculated for a particular background and, then, conjectured to hold in general [20] on

grounds of their universal form.
5For the heterotic string case, the simplest possible corrections to the (N = 1) dilatino χ transformation

rules (see eq. (23) in [19]) consist in modifying (‘renormalizing’) the dilaton Φ appearing in the standard

supersymmetry transformations.
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In this perspective it looks promising that the D = 11 generalized connection ťµ̃ =

(ťµ, ť10) (cf. (1.3); here µ̃ = (µ; #) = 0, . . . 9; 10) considered in [20], contains the terms

Q̌µ̃1...µ̃6Γµ̃1...µ̃6 ; their dimensional reduction would produce, among others, the contribution

Q̌µ1...µ5 10Γµ1...µ5Γ11 which is of the needed type, see eq. (5.2) (the Γ10 ≡ Γ# in D = 11 is

the Γ11 in D = 10 ).

To summarize, although it has been shown that a ν = 31/32 preonic solution is not

allowed in the classical type II supergravities (in [1] for type IIB and here for type IIA), a

conclusive analysis with quantum stringy corrections, providing a more precise description

of string/M-theory, remains to be done. If preons were found to exist when quantum

corrections are taken into account, it would be only natural on account of their special role

as the ‘quarks of M-theory’ [2] 6. Preons would only be ‘seen’ by looking at the ‘quantum

solutions’ of string theory, an approximation of which is provided by supergravity with

stringy corrections.

As far as the study of ‘classical’ supergravity is concerned, the natural next step

is to clarify the level of the mentioned ‘preon conspiracy’ [2] in the classical D = 10

supergravity i.e., whether it is possible to find two-preonic ν = 30/32 supersymmetric

solutions, preserving all but two supersymmetries, or whether the ‘counterpart’ of the

colourless quark states in the case of preons should include no less than four preonic

constituents corresponding to the highest non-fully supersymmetric states up to now found,

the ν = 28/32 states of the IIB case [21].

As for D = 11 supergravity, although we have not been able to reach a definite con-

clusion on the existence of ν = 31/32 supersymmetric solutions, we have presented here

their characteristic properties: such a D = 11 BPS preonic solution should have Killing

directions, both for the metric g and the gauge field strength F4, such that at least one of

its 31 Killing spinors depends on the coordinates corresponding to these directions.

Finally, we conclude by mentioning that all searches for preonic solutions, including

this one, have been concerned with purely bosonic solutions, a restriction that does not

follow from [2].
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